Tag: Robustness
All the articles with the tag "Robustness".
-
Wasserstein Distributionally Robust Nonparametric Regression
This paper introduces a Wasserstein Distributionally Robust Optimization framework for nonparametric regression, using Lipschitz-constrained feedforward neural networks to derive non-asymptotic error bounds for local worst-case risk under model misspecification, demonstrating robustness through simulations and MNIST dataset application.
-
Llama See, Llama Do: A Mechanistic Perspective on Contextual Entrainment and Distraction in LLMs
本文提出上下文牵引(Contextual Entrainment)现象,揭示语言模型对提示中出现token的机制性偏好,并通过可微分掩码方法识别牵引头(entrainment heads),为理解和缓解分心问题提供了新视角。
-
Hide & Seek: Transformer Symmetries Obscure Sharpness & Riemannian Geometry Finds It
This paper introduces geodesic sharpness, a novel measure using Riemannian geometry to account for transformer symmetries on a quotient manifold, demonstrating stronger correlations with generalization across diagonal networks, vision transformers, and language models compared to traditional adaptive sharpness.
-
Does quantization affect models' performance on long-context tasks?
本文系统评估了量化对大型语言模型在长上下文任务中的性能影响,发现8-bit量化基本保持准确率(下降约0.8%),而4-bit量化导致显著损失(最高达59%),且影响因模型、任务和语言而异,强调了在长上下文和多语言场景下谨慎应用量化的必要性。
-
Sparse-Group Boosting with Balanced Selection Frequencies: A Simulation-Based Approach and R Implementation
This paper introduces sparse-group boosting and a simulation-based group balancing algorithm within the 'sgboost' R package to mitigate variable selection bias in high-dimensional grouped data, demonstrating improved fairness and interpretability through simulations and ecological data analysis.