Tag: Representation Learning
All the articles with the tag "Representation Learning".
-
Improving Reasoning Performance in Large Language Models via Representation Engineering
本文通过表示工程方法,利用控制向量干预大型语言模型的残差流,成功提升了Pythia和Mistral模型在归纳、演绎和数学推理任务上的表现,表明推理能力可通过调整内部表示进行调控。
-
Massive Values in Self-Attention Modules are the Key to Contextual Knowledge Understanding
本文系统揭示了自注意力模块中大规模值在LLM上下文知识理解中的关键作用,并通过实验证明其源于旋转位置编码(RoPE),为模型优化和量化策略提供新洞见。
-
Survey of Abstract Meaning Representation: Then, Now, Future
本文综述了抽象意义表示(AMR)作为一种图结构语义表示框架的发展、解析与生成方法、多语言扩展及下游应用,揭示其在提升机器语言理解中的潜力与局限。
-
Style Feature Extraction Using Contrastive Conditioned Variational Autoencoders with Mutual Information Constraints
This paper proposes a novel method combining contrastive learning with conditional variational autoencoders and mutual information constraints to extract style features from unlabeled data, demonstrating effectiveness on simple datasets like MNIST while facing challenges with natural image datasets due to augmentation limitations and qualitative evaluation.