Tag: Reinforcement Learning
All the articles with the tag "Reinforcement Learning".
-
MARFT: Multi-Agent Reinforcement Fine-Tuning
本文提出MARFT框架,通过序列决策和信任区域优化在LLM-based多代理系统中实现高效强化微调,提升代理协作能力并解决传统MARL的适用性问题。
-
Monte Carlo Planning with Large Language Model for Text-Based Game Agents
本文提出MC-DML算法,通过整合大型语言模型的动态记忆机制与蒙特卡罗树搜索,提升文本-based游戏代理的规划效率和性能,实验结果显示其在初始阶段就优于需多次迭代的强基线。
-
Learning Explainable Dense Reward Shapes via Bayesian Optimization
本文提出一种通过Bayesian Optimization学习解释性密集奖励形状的方法,以解决RLHF中奖励稀疏问题,实现token级信用分配优化,提升训练效率和性能,同时保持最优政策不变。
-
Synergizing RAG and Reasoning: A Systematic Review
本论文系统综述了检索增强生成(RAG)与推理能力的协同整合,构建了多维分类框架、提供了实用指南,并指出了未来研究方向,以推进RAG系统在复杂任务中的认知能力。
-
TTRL: Test-Time Reinforcement Learning
本文提出测试时强化学习(TTRL)方法,通过多数投票估计奖励,在无标签测试数据上训练大语言模型,实现模型自演化并显著提升推理任务性能。