Tag: Planning
All the articles with the tag "Planning".
-
LLM-Coordination: Evaluating and Analyzing Multi-agent Coordination Abilities in Large Language Models
本文通过LLM-Coordination基准测试框架,评估大型语言模型在纯协调游戏中的多智能体协调能力,发现其在环境依赖任务中表现优异但在心智理论推理和联合规划中存在显著不足,同时展现出对未见伙伴的零样本适应性。
-
Toward Efficient Exploration by Large Language Model Agents
本文通过使用 LLMs 显式实现后验采样 RL 算法,显著提高了 LLMs 代理在自然语言环境中的探索效率,同时保留了经典算法的统计性能优势。
-
WALL-E 2.0: World Alignment by NeuroSymbolic Learning improves World Model-based LLM Agents
本文提出WALL-E 2.0,一种无训练的神经符号学习方法,通过对齐LLM与环境动态构建精确世界模型,并结合模型预测控制框架,显著提升了LLM代理在开放世界任务中的性能。
-
Learning to Plan Before Answering: Self-Teaching LLMs to Learn Abstract Plans for Problem Solving
本文提出LEPA自训练算法,通过训练LLM生成预期计划作为抽象元知识来提升问题解决泛化能力,并在多个推理基准上显著优于现有方法。
-
Plan-and-Act: Improving Planning of Agents for Long-Horizon Tasks
本文提出PLAN-AND-ACT框架,通过分离规划和执行模块、利用合成数据训练和动态重规划,提高LLM代理在复杂长期任务中的性能,并在web导航基准上达到state-of-the-art结果。