Tag: Parameter-Efficient Fine-Tuning
All the articles with the tag "Parameter-Efficient Fine-Tuning".
-
Universal Reasoner: A Single, Composable Plug-and-Play Reasoner for Frozen LLMs
本文提出 Universal Reasoner (UniR),一种轻量级、可组合的推理模块,通过将预定义奖励转化为 token 级别指导信号,为冻结的大型语言模型提供高效的推理能力增强,并在数学推理与机器翻译任务上展现出优于部分基线的性能与跨模型迁移能力。
-
MoRE: A Mixture of Low-Rank Experts for Adaptive Multi-Task Learning
本文提出MoRE方法,通过将LoRA的不同秩视为专家并设计自适应秩选择器,显著提升了大型语言模型在多任务场景中的微调效率和性能,同时保持较低的参数量。
-
Local Mixtures of Experts: Essentially Free Test-Time Training via Model Merging
本文提出测试时模型合并(TTMM)方法,通过在训练时预训练大量专家模型并在测试时动态合并参数,以几乎无测试时开销的方式逼近测试时训练(TTT)的语言建模性能。
-
1bit-Merging: Dynamic Quantized Merging for Large Language Models
1bit-Merging提出了一种动态模型合并框架,通过1位量化任务向量和任务特定路由,在保持94.53%性能的同时将存储需求降至55.02%,在通用知识、数学推理和代码生成任务上优于传统和动态合并方法。
-
Mixup Model Merge: Enhancing Model Merging Performance through Randomized Linear Interpolation
本文提出Mixup Model Merge (M³) 方法,通过在参数空间中随机线性插值并利用Beta分布采样贡献比例,显著提升了大语言模型合并的性能、分布外鲁棒性和对抗鲁棒性。