Tag: Multi-Agent
All the articles with the tag "Multi-Agent".
-
RAGEN: Understanding Self-Evolution in LLM Agents via Multi-Turn Reinforcement Learning
本文提出StarPO框架和RAGEN系统,通过多轮轨迹级别强化学习训练LLM智能体,揭示了训练不稳定性(如Echo Trap)和推理能力不足的挑战,并通过StarPO-S改进稳定性和泛化性,但推理能力仍需细粒度奖励设计支持。
-
EMORL: Ensemble Multi-Objective Reinforcement Learning for Efficient and Flexible LLM Fine-Tuning
本文提出EMORL框架,通过集成学习分别训练单目标模型并在隐藏状态层聚合,结合分层网格搜索优化权重,在咨询反思生成任务中实现了与传统方法相当的性能,同时显著提升了训练效率、可扩展性和解释性。
-
MaskSearch: A Universal Pre-Training Framework to Enhance Agentic Search Capability
本文提出 MASKSEARCH 框架,通过 Retrieval-Augmented Mask Prediction (RAMP) 预训练任务结合监督微调和强化学习,显著提升了大型语言模型在开放域多跳问答任务中的代理搜索能力。
-
Communicating Activations Between Language Model Agents
This paper introduces Activation Communication (AC), a novel method for inter-LLM communication using intermediate activations instead of natural language, achieving up to 27% performance improvement over traditional methods with significantly reduced compute across coordination games and reasoning benchmarks.
-
AI agents may be worth the hype but not the resources (yet): An initial exploration of machine translation quality and costs in three language pairs in the legal and news domains
本文通过实证评估五种机器翻译范式,发现推理增强的大型语言模型(如o1-preview)在人工评估中表现出色,超越传统NMT,而多智能体系统虽具潜力,但因高计算成本和语言对表现不一致而受限。