Tag: Fine-tuning
All the articles with the tag "Fine-tuning".
-   
Layered Unlearning for Adversarial Relearning
本文提出分层遗忘(Layered Unlearning, LU)方法,通过多阶段逐步遗忘数据子集并诱导不同抑制机制,增强大型语言模型对对抗性重新学习的鲁棒性,尽管对语料库攻击仍显脆弱。
 -   
Less is More: Enhancing Structured Multi-Agent Reasoning via Quality-Guided Distillation
本文提出了一种质量导向的多代理框架,通过提示诱导、检索增强合成和奖励过滤从少量标注数据中提炼高质量监督信号,提升LLMs在低资源结构化推理任务中的性能。
 -   
Latte: Transfering LLMs` Latent-level Knowledge for Few-shot Tabular Learning
The paper introduces 'Latte', a framework that transfers latent-level knowledge from Large Language Models during training to enhance few-shot tabular learning, outperforming baselines by leveraging unlabeled data and mitigating overfitting across diverse classification and regression tasks.
 -   
COSMOS: Predictable and Cost-Effective Adaptation of LLMs
COSMOS introduces a cost-effective framework to predict performance and cost of LLM adaptation strategies like QLoRA fine-tuning and retrieval-augmented ICL, achieving high accuracy (1.09% MAE) and reducing computational costs by 92.72% across eight diverse benchmarks.
 -      
本文通过提出位置 ID 操纵的 PFT 方法,揭示并解决了 LLM 在角色分离学习中依赖捷径的问题,提高了模型的鲁棒性和安全性,同时保持了性能。