Tag: Fine-tuning
All the articles with the tag "Fine-tuning".
-   LENSLLM: Unveiling Fine-Tuning Dynamics for LLM SelectionLENSLLM introduces a Hessian-based PAC-Bayes framework and NTK-based scaling model for LLM selection, achieving up to 91.1% accuracy and 88.5% computational cost reduction by modeling fine-tuning dynamics across diverse tasks. 
-   On the Generalization vs Fidelity Paradox in Knowledge Distillation本文通过大规模实证分析揭示知识蒸馏(KD)显著提升小型语言模型的零样本推理性能(高达10%),但对大型模型收益有限,且性能提升与推理保真度存在脱节,强调任务专长和适度参数调整的重要性。 
-   Not All Adapters Matter: Selective Adapter Freezing for Memory-Efficient Fine-Tuning of Language Models本文提出SAFE方法,通过选择性冻结对任务贡献较小的适配器,实现资源高效的语言模型微调,在显著降低内存使用和计算成本的同时,保持甚至提升模型性能。 
-   RARE: Retrieval-Augmented Reasoning ModelingRARE提出了一种新范式,通过将领域知识存储外部化并优化推理能力,使轻量级模型在多领域基准测试中实现最先进的性能,超越检索增强的GPT-4和DeepSeek-R1。 
-   Skip-Thinking: Chunk-wise Chain-of-Thought Distillation Enable Smaller Language Models to Reason Better and Faster本文提出分块训练(CWT)和跳跃思维训练(STT),通过将推理过程分块并跳过非核心块,显著提升小型语言模型在链式思维蒸馏中的推理准确性和速度。