Posts
All the articles I've posted.
-
Why do LLMs attend to the first token?
This paper argues that attention sinks in LLMs, particularly at the first token, are a useful mechanism to prevent over-mixing of information in deep Transformers, supported by theoretical insights and empirical evidence from Gemma 7B, LLaMa 3.1 models, and pre-training experiments showing stronger sinks with larger models and longer contexts.
-
M+: Extending MemoryLLM with Scalable Long-Term Memory
M+通过引入长期记忆机制和协同训练的检索器,显著扩展了MemoryLLM的知识保留能力至超过160k token,并在长上下文任务中优于基线,同时保持较低GPU内存消耗。
-
Talking Heads: Understanding Inter-layer Communication in Transformer Language Models
This paper investigates inter-layer communication in Transformer LMs by identifying low-rank communication channels via SVD, demonstrating their causal role in prompt sensitivity through interventions that significantly improve performance on context retrieval tasks like the Laundry List task.
-
Scalable Parameter and Memory Efficient Pretraining for LLM: Recent Algorithmic Advances and Benchmarking
本文通过综述、基准测试和提出权重重分解与动量重置两种技术,探索了大型语言模型预训练中的参数和内存高效方法,显著提升了低秩方法的性能并减少内存消耗,但仍无法完全匹配全秩训练的效果。
-
Learning Composable Chains-of-Thought
本文提出Composable Chain-of-Thought方法,通过数据增强改进原子任务CoT格式,并结合多任务学习或模型合并实现零样本组合推理,使用拒绝采样微调进一步提升性能,在字符串操作和自然语言任务上优于标准CoT基准。